Systematic Workflow for Reservoir Characterization in Northwestern Colombia using Multi-attribute Classification

By Deborah Sacrey and Camilo Sierra | Published with permission: First Break | Volume 38, March 2020

Introduction

Unsupervised machine learning (ML) with Self-Organizing Maps (SOM) was applied to a 3D seismic reflection survey in an area in Northwestern Colombia, South America to better visualize the reservoir of a newly discovered field. This technology encompasses multiple volumes of seismic attributes which are combined into a single volume of multi-attribute seismic samples. With ML, these data are classified with the statistics of sample interval resolution. It is expected that classified seismic samples associated with many SOM winning neurons can be interpreted as single depositional environments with unique rock properties associated with that winning neuron (Roden et al., 2015; Roden and Chen, 2017). Seismic interpretation skills are vital to this process. Other winning neurons, for example, are recognized as assemblages associated with acquisition footprints and others with seismic noise assemblages. In this study, the SOM results were calibrated to wells that have been drilled to date. Geobodies from these winning neurons, which tied to productive intervals registered in these wells, were then visualized for their thicknesses and areal extents within the reservoir field. A workflow is presented which includes data conditioning, finding the best combination of attributes for ML classification aided by Principal Component Analysis, unsupervised ML through SOM multi-attribute seismic sample training and then survey classification in the zone of interest and, finally, geobodies created from classified samples of selected winning neurons, Vizualization of these results are outlined in this paper. The result are potential reservoir estimates calculated through geobodies which have been interpreted with unsupervised ML classifications.

 

You must log in to read the rest of this article. Please log in or register as a user.

 

About the study area

The tectonic setting of this study is along the northwestern margin of South America where the South American plate overrides subduction of the Caribbean Plate. Most specifically, the field discovery occurs within the San Jacinto fold belt, which is a west-verging fold and thrust belt where Upper Cretaceous to Eocene marine basin sediments have been preserved (Mora et al., 2017). See Figure 1 for location of this tectonically complicated study.

Area of Study in Systematic Workflow for Reservoir Characterization in Northwestern Colombia using Multi-attribute Classification
Figure 1. Tectonic setting of the northwest margin of the South American Plate overriding the subduction of the Caribbean Plate (satellite photo from Google Earth).

Geologically, the middle to upper Eocene sequence in this area is the Chengue Group. As reported by Mora, et al. (2017), this is identified as Sequence Three out of a total of five identified sequences which comprise the stratigraphy within this fold belt.In the northern portion of the area the Lower Eocene is present, so part of the Chengue formation is in Sequence 2 in the study area.

Figure 2 is a simplified structural rendering of these sequence boundaries. In the figure, SQ2 is the zone of interest in this study. The Sequence Two zone consists of conglomerates, lithic sandstone, siltstones and carbonates.

Zone of interest in Systematic Workflow for Reservoir Characterization in Northwestern Colombia using Multi-attribute Classification
Figure 2. Simplified structural rendering showing sequence boundaries in project area. SQ2 is the stratigraphic equivalent of the Chengue Formation (Mora et al., 2017)

In this tectonically complex area, seismic reflections are complicated as well. Seismically however, the field was found on a paleo-high which, during Eocene time, had a thickness between 100 ft (30.5 m) to 300 ft (91.4 m). Figure 3 shows a typical dip line through the seismic survey to reveal the approximate structural setting of the field. To date, eight wells have been drilled to intercept the Eocene pay zone in the field. Of those eight wells, seven have been found to be economic reservoirs and the eighth well had reservoir rock, but the pay was thin and sitting on water.

Dip line through the seismic survey to reveal the approximate structural setting of the field
Figure 3. Dip line taken from 3D showing structural setting of the newly discovered field.
Project scope

The goal of this project was to generate a seismic facies model within the zone of interest to improve placement of future wildcat
and development drilling locations within the existing field by implementing unsupervised ML classification techniques. This workflow would allow for evaluation of potential added value of ML-assisted seismic interpretation in areas with complex geologic settings.

Machine learning workflow

Critical to interpretation of sample-based, multiple attribute classification is getting correct time/depth relationships into the wells of interest. For this requirement, individual synthetic seismic relationships between borehole depths and two-way seismic travel times were built for each well borehole. In that way, productive zones at known borehole depths were tied to specific winning neurons in the neural analysis.

Another important factor for successful seismic interpretation is selection of zones of interest for ML classification which, here, are bounded as pairs of horizons for each zone. Initially the horizons were picked on a 50 m x 50 m inline and crossline grid in the data set across a little over 300 km2. Those grids were then gridded to create a complete surface, and that surface was then converted back to a horizon on all bin locations. Such a loosely-picked smooth grid was then a guide to identify the actual surface around the field area. In a novel approach, the upper surface of the horizon was reinterpreted as guided by a low-topology SOM classification in order to delineate features of sequence boundaries. Figure 4 shows an example of revised upper and lower horizons along an arbitrary line through the well boreholes that were interpreted with the assistance of the low topology SOM training and classification.

Low topology classification of attributes seismic interpretation software
Figure 4. Upper and Lower boundaries of the Chengue Formation as reinterpreted using low topology (2×2) classification of attributes specifically used for delineation of sequence boundaries. Attributes used were Normalized Amplitude, Instantaneous Frequency and Instantaneous Phase.

Because the field is producing primarily gas with limited liquid hydrocarbons, it was determined that the far angle stack amplitude volume would be used to generate the 17+ attributes used in this analysis. The far angle stack range was from 17 to 26 degrees incident angle at target. In addition to a full suite of instantaneous attributes, very specific geometric attribute volumes were computed to identify faulting and fracturing that might affect the reservoir. The use of the Far Angle Stack volume helped to accentuate any gas response coming from the reservoir. Once the attributes were generated, Principal Component Analysis (PCA) was used to help differentiate those attributes which carried the largest amount of variance and would be the most useful in the classification process to help understand the deposition of the Sequence Three rocks and the hydrocarbon- bearing reservoir within that sequence.

PCA is one of the most common descriptive statistics procedures used to synthesize the information contained in a set of variables. Here PCA of volumes of seismic attributes are reduced in dimensionality through the attribute selection. When applied to seismic attributes, PCA is used to identify those attributes which have made the greatest ‘contribution’ based on the extent of their relative variance to a zone of interest. Attributes identified through PCA are responsive to specific geological features such as lithology changes or fracture zones.

From PCA analysis, five attributes were selected for the SOM analysis. Those were Normalized Amplitude, Instantaneous Phase, Envelope, Hilbert and Sweetness, all of which were calculated from the far angle stack, as mentioned previously. Each of these attributes within the defined window of investigation was then ‘normalized’ to one another so that no one attribute carried more weight of information than any other attribute. Then during SOM training, that sample information which was organized into distinct natural clusters (patterns) by the vectors (neurons) in an attribute space is identified and classified. After training, all multi-attribute seismic samples are classified by these trained winning neurons and displayed by a 3D viewer. Each classification pattern is isolated and viewed in a 3D volume visualizer using the 2D colour map. The colour map is based on the SOM neural network which has adapted to the multi-attribute training samples.

Isolating various neuron clusters in Paradise 3D viewer, the seismic interpretation software
Figure 5. Isolating various neuron clusters in 3D viewer. In this case, Neurons 1, 6, 12 and 24 are visible while the rest of the neural patterns are turned off.

Figure 5 illustrates the value of individual classification patterns within a volume. One reason for unsupervised SOM is that there is no way of knowing the number of natural ‘patterns’ that occur within the investigation window.Instead of forcing a solution to a model of a fixed number of classifications, the data itself defines the information picked by ML from natural clusters of samples of similar seismic attributes as they occur in the actual data. Often, several SOM neural network topologies, showing different levels of detail, are used in the seismic interpretation of geologic features to better determine lithology details. This work included multiple neural network topologies to arrive at an optimum. Using too few winning neurons combines natural clusters, resulting in only a gross picture of the reservoir, while too many winning neurons will produce an image of the subsurface with so much detail it is difficult to interpret.

A series of neuron topologies were generated and evaluated ranging from 2×2 (for mapping purposes only) through to 9×9. The chosen topology best tied SOM classifications to well control lithologies extracted from the log lithofacies – a 5×5 neuronal topology with 25 winning neurons. Figure 6a shows an enlarged portion of an arbitrary line through five wells in the field. The key winning neurons are listed with their comparative colours in the 2D Colormap colours. In Figure 6a three wells appear to be in the same reservoir (wells W4, W5, and W6), while two wells (W2 and W3) are compartmentalized in another portion, although both are in the same lithologies as inferred from their classification. Figure 6b (bottom) shows the remaining portion of the arbitrary line that passes through well W8 which was identified as a slightly different reservoir component by SOM classification with dark-yellow Neuron #11. Well W7 was the single well which was drilled downdip to the main portion of the field and interpreted here as only clipping a portion of the reservoir, which at that point was on water (personal communication – Sierra).

Geobodies in the classified seismic samples associated with selected winning neurons in Paradise AI
Figure 6. An arbitrary line going through the wells in the field and the neural classification using five attributes. Key neurons found to define the reservoir and their respective colours are shown in white box. Yellow circles show reservoir in individual wells and emphasize compartmentalization.

Once it was determined that the 5×5 neuron topology SOM calibrated best to well control, geobodies were identified in the classified seismic samples associated with selected winning neurons listed in Figure 5. The main reservoir classified samples associated with winning neurons, #2, #3 and #12 are seen in the 3D visualization display in Figure 7, while all classified samples associated with the winning neurons linked to production can be seen in Figure 8.

Key geobodies associated with reservoirs in Paradise 3D Viewer
Figure 7. Key geobodies associated with reservoirs. Main reservoir consists of Neurons #2, 3 and 12.

Display of key geobodies which comprise reservoirs in field
Figure 8. Display of key geobodies which comprise reservoirs in field.

Once selected geobodies have been identified with specific portions of the reservoir, a table is easily constructed so that potential reserves can be calculated within the interpreted geobody. These potential reservoir calculations require several pieces of information, namely interval velocities, net to gross ratios, porosities (in decimal percentages) and water saturation (also in decimal percentage). An example of these calculations is shown in Figure 9. A similar use of SOM sample calculations for reservoir estimation is reported by Leal et al., 2019.

The recovery factor to calculate the estimated reserves in geobody
Figure 9. Highlighted geobody information to calculate total hydrocarbon pore volume. Text boxes (from left to right) are number of samples (voxels) which make up geobody, velocity (metres per second), Net/Gross of 80%, Porosity of 24% and water saturation of 25%. Last box on right is hydrocarbon pore volume in cubic metres. All one needs is a recovery factor to calculate the estimated reserves in that geobody .
Conclusions

It was determined through this study that the deposition of these reservoirs was discontinuous and compartmentalized. This discovery is contrary to the published interpretation of this unit as ‘Fan deltas and related submarine slope deposits’ (Mora et al., 2017). We interpret this unit as more composed of debris flows or mass transport systems than a fan. This new depositional model matches core data and inferred seismic sample classifications near the wells.

There is evidence from unsupervised ML classifications, that not only lithological information was revealed, but also fluid effect because it was based on the Far Angle survey attributes which could be known to exhibit fluid effect. This was observed near well #8. It was also shown through the classification process that key reservoirs in this area are not limited by structure but have a stratigraphic component as well.

It was advantageous to use unsupervised ML classification of multi-attribute seismic samples because the technology is highly effective at revealing stratigraphic patterns in a complex structural setting. This was not evident from regular seismic amplitude data nor possible to be discovered through a tedious analysis of individual seismic attributes. Winning neuron ML classification has been found in this work and elsewhere to be a cost-effective alternative to traditional seismic inversion projects. The method is both a faster interpretation process with finer details and less subject to rock mechanics sampling limitations. Cost savings aside, the ML classification process also provided a significant time saving in arriving at a seismic interpretation. Zones of interest could be delineated within a matter of a few days instead of the weeks or months typically required for inversion processing of these data. In areas without well control, unsupervised ML classification is an attractive interpretation tool where seismic inversion is not possible because of a lack of subsurface well borehole sampling. This allows interpreters who are assisted by ML classification analysis to improve predictions of depositional patterns, thus helping to reduce risk in provinces of wildcat exploration.

Finally, it must be noted that data preparation before ML is crucial, and can easily take up 70 to 80% of total project time. Particularly important is the time needed to properly determine precise time/depth relationships at the wells to accurately tie borehole lithologies to respective seismic classifications based on ML training of seismic samples near the wells. Moreover, an accurate time/depth relationship is critical for many other successful types of analysis. Unsupervised ML classification based on low neuron topology analysis can aid in mapping difficult depositional and structural environments, and multiple combinations of attributes can help to determine which analysis best fits the wells. This, in turn, results in geobodies of greater dependability whose volumetric calculations may have greater accuracy that can be tested by dynamic reservoir simulation.

Acknowledgments

The authors would like to thank the Lewis Energy Group, particularly Stan Jumper, V.P. Exploration, for allowing the presentation of this study. We would also like to thank Geophysical Insights, developers of the Paradise AI workbench, and the team members which facilitated the study including Hal Green, Rocky Roden, Sarah Stanley, Ivan Marroquin, Deborah Sacrey, Camilo Sierra and Diego Sanchez.

 

You must log in to access the PDF file. Please log in or register as a user.

 

Welcome Back!

Download PDF here

OR

Request access by filling the form below to download full PDF.

Most Popular Papers
systematic workflow for reservoir thumbnail
Systematic Workflow for Reservoir Characterization in Northwestern Colombia using Multi-attribute Classification
A workflow is presented which includes data conditioning, finding the best combination of attributes for ML classification aided by Principal ...
Read More
identify reservoir rock
Net Reservoir Discrimination through Multi-Attribute Analysis at Single Sample Scale
Published in the special Machine Learning edition of First Break, this paper lays out results from multi-attribute analysis using Paradise, ...
Read More
CNN_facies
Seismic Facies Classification Using Deep Convolutional Neural Networks
Using a new supervised learning technique, convolutional neural networks (CNN), interpreters are approaching seismic facies classification in a revolutionary way ...
Read More
  • Registration confirmation will be emailed to you.

  • We're committed to your privacy. Geophysical Insights uses the information you provide to us to contact you about our relevant content, events, and products. You may unsubscribe from these communications at any time. For more information, check out our Privacy Policy

    Bob A. Hardage

    Investigating the Internal Fabric of VSP data with Attribute Analysis and Unsupervised Machine Learning

    Examination of vertical seismic profile (VSP) data with unsupervised machine learning technology is a rigorous way to compare the fabric of down-going, illuminating, P and S wavefields with the fabric of up-going reflections and interbed multiples created by these wavefields. This concept is introduced in this paper by applying unsupervised learning to VSP data to better understand the physics of P and S reflection seismology. The zero-offset VSP data used in this investigation were acquired in a hard-rock, fast-velocity, environment that caused the shallowest 2 or 3 geophones to be inside the near-field radiation zone of a vertical-vibrator baseplate. This study shows how to use instantaneous attributes to backtrack down-going direct-P and direct-S illuminating wavelets to the vibrator baseplate inside the near-field zone. This backtracking confirms that the points-of-origin of direct-P and direct-S are identical. The investigation then applies principal component (PCA) analysis to VSP data and shows that direct-S and direct-P wavefields that are created simultaneously at a vertical-vibrator baseplate have the same dominant principal components. A self-organizing map (SOM) approach is then taken to illustrate how unsupervised machine learning describes the fabric of down-going and up-going events embedded in vertical-geophone VSP data. These SOM results show that a small number of specific neurons build the down-going direct-P illuminating wavefield, and another small group of neurons build up-going P primary reflections and early-arriving down-going P multiples. The internal attribute fabric of these key down-going and up-going neurons are then compared to expose their similarities and differences. This initial study indicates that unsupervised machine learning, when applied to VSP data, is a powerful tool for understanding the physics of seismic reflectivity at a prospect. This research strategy of analyzing VSP data with unsupervised machine learning will now expand to horizontal-geophone VSP data.

    Bob A. Hardage

    Bob A. Hardage received a PhD in physics from Oklahoma State University. His thesis work focused on high-velocity micro-meteoroid impact on space vehicles, which required trips to Goddard Space Flight Center to do finite-difference modeling on dedicated computers. Upon completing his university studies, he worked at Phillips Petroleum Company for 23 years and was Exploration Manager for Asia and Latin America when he left Phillips. He moved to WesternAtlas and worked 3 years as Vice President of Geophysical Development and Marketing. He then established a multicomponent seismic research laboratory at the Bureau of Economic Geology and served The University of Texas at Austin as a Senior Research Scientist for 28 years. He has published books on VSP, cross-well profiling, seismic stratigraphy, and multicomponent seismic technology. He was the first person to serve 6 years on the Board of Directors of the Society of Exploration Geophysicists (SEG). His Board service was as SEG Editor (2 years), followed by 1-year terms as First VP, President Elect, President, and Past President. SEG has awarded him a Special Commendation, Life Membership, and Honorary Membership. He wrote the AAPG Explorer column on geophysics for 6 years. AAPG honored him with a Distinguished Service award for promoting geophysics among the geological community.

    Carrie Laudon
    Senior Geophysical Consultant

    Calibrating SOM Results to Wells – Improving Stratigraphic Resolution in the Niobrara

    Over the last few years, because of the increase in low cost computer power, individuals and companies have stepped up investigations into the use of machine learning in many areas of E&P. For the geosciences, the emphasis has been in reservoir characterization, seismic data processing and most recently, interpretation.
    By using statistical tools such as Attribute Selection, which uses Principal Component Analysis (PCA), and Multi-Attribute Classification using Self Organizing Maps (SOM), a multi-attribute 3D seismic volume can be “classified.” PCA reduces a large set of seismic attributes to those that are the most meaningful. The output of the PCA serves as the input to the SOM, a form of unsupervised neural network, which when combined with a 2D color map facilitates the identification of clustering within the data volume.
    The application of SOM and PCA in Paradise will be highlighted through a case study of the Niobrara unconventional reservoir. 100 square miles from Phase 5 of Geophysical Pursuit, Inc. and Fairfield Geotechnologies’ multiclient library were analyzed for stratigraphic resolution of the Niobrara chalk reservoirs within a 60 millisecond two-way time window. Thirty wells from the COGCC public database were available to corroborate log data to the SOM results. Several SOM topologies were generated and extracted within Paradise at well locations. These were exported and run through a statistical analysis program to visualize the neuron to reservoir correlations via histograms. Chi2 squared independence tests also validated a relationship between SOM neuron numbers and the presence of reservoir for all chalk benches within the Niobrara.

    Dr. Carrie Laudon
    Senior Geophysical Consultant

    Carolan (Carrie) Laudon holds a PhD in geophysics from the University of Minnesota and a BS in geology from the University of Wisconsin Eau Claire. She has been Senior Geophysical Consultant with Geophysical Insights since 2017 working with Paradise®, their machine learning platform. Prior roles include Vice President of Consulting Services and Microseismic Technology for Global Geophysical Services and 17 years with Schlumberger in technical, management and sales, starting in Alaska and including Aberdeen, Scotland, Houston, TX, Denver, CO and Reading, England. She spent five years early in her career with ARCO Alaska as a seismic interpreter for the Central North Slope exploration team.

    Deborah Sacrey
    Owner, Auburn Energy

    Finding Hydrocarbons using SOM Classification

    In the past, the use of unsupervised neural analysis has been used only on one seismic attribute at a time and using a seismic wavelet to find the natural clusters in the data. A new approach, using multiple seismic attributes and looking at the statistical clustering in the data based on sample interval can significantly help in discerning thin beds and subtle stratigraphic changes in the subsurface.

    Advances in computing power and the creation of many new seismic attribute families, such as Geometric, AVO, Inversion and the use of Spectral Decomposition over the last 30 years has made multiple attribute analysis extremely powerful.

    The key to this presentation is showing examples of how the SOM classification process has led to hydrocarbon discoveries in different types of depositional environments. Examples of cases in which the decision was made not to drill a well, thus avoiding a potential dry hole, will also be shown.

    Deborah Sacrey
    Owner, Auburn Energy

    Deborah is a geologist/geophysicist with 44 years of oil and gas exploration experience in Texas, Louisiana Gulf Coast and Mid-Continent areas of the US. She received her degree in Geology from the University of Oklahoma in 1976 and immediately started working for Gulf Oil in their Oklahoma City offices.

    She started her own company, Auburn Energy, in 1990 and built her first geophysical workstation using Kingdom software in 1996. She helped SMT/IHS for 18 years in developing and testing the Kingdom Software. She specializes in 2D and 3D interpretation for clients in the US and internationally. For the past nine years she has been part of a team to study and bring the power of multi-attribute neural analysis of seismic data to the geoscience public, guided by Dr. Tom Smith, founder of SMT. She has become an expert in the use of Paradise software and has seven discoveries for clients using multi-attribute neural analysis.

    Deborah has been very active in the geological community. She is past national President of SIPES (Society of Independent Professional Earth Scientists), past President of the Division of Professional Affairs of AAPG (American Association of Petroleum Geologists), Past Treasurer of AAPG and Past President of the Houston Geological Society. She is also Past President of the Gulf Coast Association of Geological Societies and just ended a term as one of the GCAGS representatives on the AAPG Advisory Council. Deborah is also a DPA Certified Petroleum Geologist #4014 and DPA Certified Petroleum Geophysicist #2. She belongs to AAPG, SIPES, Houston Geological Society, South Texas Geological Society and the Oklahoma City Geological Society (OCGS).

    Dr. Tom Smith
    President & CEO

    Dr. Tom Smith received a BS and MS degree in Geology from Iowa State University. His graduate research focused on a shallow refraction investigation of the Manson astrobleme. In 1971, he joined Chevron Geophysical as a processing geophysicist but resigned in 1980 to complete his doctoral studies in 3D modeling and migration at the Seismic Acoustics Lab at the University of Houston. Upon graduation with the Ph.D. in Geophysics in 1981, he started a geophysical consulting practice and taught seminars in seismic interpretation, seismic acquisition and seismic processing. Dr. Smith founded Seismic Micro-Technology in 1984 to develop PC software to support training workshops which subsequently led to development of the KINGDOM Software Suite for integrated geoscience interpretation with world-wide success.

    The Society of Exploration Geologists (SEG) recognized Dr. Smith’s work with the SEG Enterprise Award in 2000, and in 2010, the Geophysical Society of Houston (GSH) awarded him an Honorary Membership. Iowa State University (ISU) has recognized Dr. Smith throughout his career with the Distinguished Alumnus Lecturer Award in 1996, the Citation of Merit for National and International Recognition in 2002, and the highest alumni honor in 2015, the Distinguished Alumni Award. The University of Houston College of Natural Sciences and Mathematics recognized Dr. Smith with the 2017 Distinguished Alumni Award.

    In 2009, Dr. Smith founded Geophysical Insights, where he leads a team of geophysicists, geologists and computer scientists in developing advanced technologies for fundamental geophysical problems. The company launched the Paradise® multi-attribute analysis software in 2013, which uses Machine Learning and pattern recognition to extract greater information from seismic data.

    Dr. Smith has been a member of the SEG since 1967 and is a professional member of SEG, GSH, HGS, EAGE, SIPES, AAPG, Sigma XI, SSA and AGU. Dr. Smith served as Chairman of the SEG Foundation from 2010 to 2013. On January 25, 2016, he was recognized by the Houston Geological Society (HGS) as a geophysicist who has made significant contributions to the field of geology. He currently serves on the SEG President-Elect’s Strategy and Planning Committee and the ISU Foundation Campaign Committee for Forever True, For Iowa State.

    Fabian Rada
    Sr. Geophysicist, Petroleum Oil & Gas Services

    Statistical Calibration of SOM results with Well Log Data (Case Study)

    The first stage of the proposed statistical method has proven to be very useful in testing whether or not there is a relationship between two qualitative variables (nominal or ordinal) or categorical quantitative variables, in the fields of health and social sciences. Its application in the oil industry allows geoscientists not only to test dependence between discrete variables, but to measure their degree of correlation (weak, moderate or strong). This article shows its application to reveal the relationship between a SOM classification volume of a set of nine seismic attributes (whose vertical sampling interval is three meters) and different well data (sedimentary facies, Net Reservoir, and effective porosity grouped by ranges). The data were prepared to construct the contingency tables, where the dependent (response) variable and independent (explanatory) variable were defined, the observed frequencies were obtained, and the frequencies that would be expected if the variables were independent were calculated and then the difference between the two magnitudes was studied using the contrast statistic called Chi-Square. The second stage implies the calibration of the SOM volume extracted along the wellbore path through statistical analysis of the petrophysical properties VCL and PHIE, and SW for each neuron, which allowed to identify the neurons with the best petrophysical values in a carbonate reservoir.

    Fabian Rada
    Sr. Geophysicist, Petroleum Oil & Gas Servicest

    Fabian Rada joined Petroleum Oil and Gas Services, Inc (POGS) in January 2015 as Business Development Manager and Consultant to PEMEX. In Mexico, he has participated in several integrated oil and gas reservoir studies. He has consulted with PEMEX Activos and the G&G Technology group to apply the Paradise AI workbench and other tools. Since January 2015, he has been working with Geophysical Insights staff to provide and implement the multi-attribute analysis software Paradise in Petróleos Mexicanos (PEMEX), running a successful pilot test in Litoral Tabasco Tsimin Xux Asset. Mr. Rada began his career in the Venezuelan National Foundation for Seismological Research, where he participated in several geophysical projects, including seismic and gravity data for micro zonation surveys. He then joined China National Petroleum Corporation (CNPC) as QC Geophysicist until he became the Chief Geophysicist in the QA/QC Department. Then, he transitioned to a subsidiary of Petróleos de Venezuela (PDVSA), as a member of the QA/QC and Chief of Potential Field Methods section. Mr. Rada has also participated in processing land seismic data and marine seismic/gravity acquisition surveys. Mr. Rada earned a B.S. in Geophysics from the Central University of Venezuela.

    Hal Green
    Director – Marketing & Business Development

    Introduction to the Paradise AI Workbench

    Companies worldwide are seeking solutions for their digital transformation initiatives and face a make-vs-buy decision when it comes to their E&P software tools. This talk will show how the commercial, off-the-shelf Paradise AI workbench can be a robust and cost-effective component of the new digital infrastructure. Using a combination of machine learning (ML) and deep learning applications, geoscientists apply Paradise to extract greater insights from seismic and well data for these and other objectives:

    • - Identify and calibrate detailed stratigraphy
    • - Distinguish thin beds below conventional tuning
    • - Classify seismic facies
    • - Detect faults automatically
    • - Interpret Direct Hydrocarbon Indicators
    • - Reveal fracture trends in shale plays
    • - Estimate reserves/resources

    The brief introduction includes single-slide use cases in different geologic settings to illustrate the general-purpose application of ‘AI’ technology. The summary also will provide some context to the other presentations available at the Geophysical Insights virtual booth.

    Hal Green
    Director of Marketing & Business Development

    Hal H. Green is a marketing executive and entrepreneur in the energy industry with more than 25 years of experience in starting and managing technology companies. He holds a B.S. in Electrical Engineering from Texas A&M University and an MBA from the University of Houston. He has invested his career at the intersection of marketing and technology, with a focus on business strategy, marketing, and effective selling practices. Mr. Green has a diverse portfolio of experience in marketing technology to the hydrocarbon supply chain – from upstream exploration through downstream refining & petrochemical. Throughout his career, Mr. Green has been a proven thought-leader and entrepreneur, while supporting several tech start-ups.

    He started his career as a process engineer in the semiconductor manufacturing industry in Dallas, Texas and later launched an engineering consulting and systems integration business. Following the sale of that business in the late 80’s, he joined Setpoint in Houston, Texas where he eventually led that company’s Manufacturing Systems business. Aspen Technology acquired Setpoint in January 1996 and Mr. Green continued as Director of Business Development for the Information Management and Polymer Business Units.

    In 2004, Mr. Green founded Advertas, a full-service marketing and public relations firm serving clients in energy and technology. In 2010, Geophysical Insights retained Advertas as their marketing firm. Dr. Tom Smith, President/CEO of Geophysical Insights, soon appointed Mr. Green as Director of Marketing and Business Development for Geophysical Insights, in which capacity he still serves today.

    Hana Kabazi
    Product Manager

    Hana Kabazi joined Geophysical Insights in October of 201, and is now one of our Product Managers for Paradise. Mrs. Kabazi has over 7 years of oil and gas experience, including 5 years and Halliburton – Landmark. During her time at Landmark she held positions as a consultant to many E&P companies, technical advisor to the QA organization, and as product manager of Subsurface Mapping in DecsionSpace. Mrs. Kabazi has a B.S. in Geology from the University of Texas Austin, and an M.S. in Geology from the University of Houston.

    Heather Bedle
    Assistant Professor, University of Oklahoma

    Gas Hydrates, Reefs, Channel Architecture, and Fizz Gas: SOM Applications in a Variety of Geologic Settings

    Students at the University of Oklahoma have been exploring the uses of SOM techniques for the last year. This presentation will review learnings and results from a few of these research projects. Two projects have investigated the ability of SOMs to aid in identification of pore space materials – both trying to qualitatively identify gas hydrates and under-saturated gas reservoirs. A third study investigated individual attributes and SOMs in recognizing various carbonate facies in a pinnacle reef in the Michigan Basin. The fourth study took a deep dive of various machine learning algorithms, of which SOMs will be discussed, to understand how much machine learning can aid in the identification of deepwater channel architectures.

    Heather Bedle
    Assistant Professor, University of Oklahoma

    Heather Bedle received a B.S. (1999) in physics from Wake Forest University, and then worked as a systems engineer in the defense industry. She later received a M.S. (2005) and a Ph. D. (2008) degree from Northwestern University. After graduate school, she joined Chevron and worked as both a development geologist and geophysicist in the Gulf of Mexico before joining Chevron’s Energy Technology Company Unit in Houston, TX. In this position, she worked with the Rock Physics from Seismic team analyzing global assets in Chevron’s portfolio. Dr. Bedle is currently an assistant professor of applied geophysics at the University of Oklahoma’s School of Geosciences. She joined OU in 2018, after instructing at the University of Houston for two years. Dr. Bedle and her student research team at OU primarily work with seismic reflection data, using advanced techniques such as machine learning, attribute analysis, and rock physics to reveal additional structural, stratigraphic and tectonic insights of the subsurface.

    Ivan Marroquin
    Senior Research Geophysicist

    Connecting Multi-attribute Classification to Reservoir Properties

    Interpreters rely on seismic pattern changes to identify and map geologic features of importance. The ability to recognize such features depends on the seismic resolution and characteristics of seismic waveforms. With the advancement of machine learning algorithms, new methods for interpreting seismic data are being developed. Among these algorithms, self-organizing maps (SOM) provides a different approach to extract geological information from a set of seismic attributes.

    SOM approximates the input patterns by a finite set of processing neurons arranged in a regular 2D grid of map nodes. Such that, it classifies multi-attribute seismic samples into natural clusters following an unsupervised approach. Since machine learning is unbiased, so the classifications can contain both geological information and coherent noise. Thus, seismic interpretation evolves into broader geologic perspectives. Additionally, SOM partitions multi-attribute samples without a priori information to guide the process (e.g., well data).

    The SOM output is a new seismic attribute volume, in which geologic information is captured from the classification into winning neurons. Implicit and useful geological information are uncovered through an interactive visual inspection of winning neuron classifications. By doing so, interpreters build a classification model that aids them to gain insight into complex relationships between attribute patterns and geological features.

    Despite all these benefits, there are interpretation challenges regarding whether there is an association between winning neurons and geological features. To address these issues, a bivariate statistical approach is proposed. To evaluate this analysis, three cases scenarios are presented. In each case, the association between winning neurons and net reservoir (determined from petrophysical or well log properties) at well locations is analyzed. The results show that the statistical analysis not only aid in the identification of classification patterns; but more importantly, reservoir/not reservoir classification by classical petrophysical analysis strongly correlates with selected SOM winning neurons. Confidence in interpreted classification features is gained at the borehole and interpretation is readily extended as geobodies away from the well.

    Ivan Marroquin
    Senior Research Geophysicist

    Iván Dimitri Marroquín is a 20-year veteran of data science research, consistently publishing in peer-reviewed journals and speaking at international conference meetings. Dr. Marroquín received a Ph.D. in geophysics from McGill University, where he conducted and participated in 3D seismic research projects. These projects focused on the development of interpretation techniques based on seismic attributes and seismic trace shape information to identify significant geological features or reservoir physical properties. Examples of his research work are attribute-based modeling to predict coalbed thickness and permeability zones, combining spectral analysis with coherency imagery technique to enhance interpretation of subtle geologic features, and implementing a visual-based data mining technique on clustering to match seismic trace shape variability to changes in reservoir properties.

    Dr. Marroquín has also conducted some ground-breaking research on seismic facies classification and volume visualization. This lead to his development of a visual-based framework that determines the optimal number of seismic facies to best reveal meaningful geologic trends in the seismic data. He proposed seismic facies classification as an alternative to data integration analysis to capture geologic information in the form of seismic facies groups. He has investigated the usefulness of mobile devices to locate, isolate, and understand the spatial relationships of important geologic features in a context-rich 3D environment. In this work, he demonstrated mobile devices are capable of performing seismic volume visualization, facilitating the interpretation of imaged geologic features.  He has definitively shown that mobile devices eventually will allow the visual examination of seismic data anywhere and at any time.

    In 2016, Dr. Marroquín joined Geophysical Insights as a senior researcher, where his efforts have been focused on developing machine learning solutions for the oil and gas industry. For his first project, he developed a novel procedure for lithofacies classification that combines a neural network with automated machine methods. In parallel, he implemented a machine learning pipeline to derive cluster centers from a trained neural network. The next step in the project is to correlate lithofacies classification to the outcome of seismic facies analysis.  Other research interests include the application of diverse machine learning technologies for analyzing and discerning trends and patterns in data related to oil and gas industry.

    Jie Qi
    Research Geophysicist

    Applications of Deep Learning-based Seismic Fault Detection

    The traditional fault detection method is based on geophysicists’ hand-picking, which is very time-consuming on large seismic datasets. Convolutional Neural Networks (CNN)-based fault detection method is an emerging technology that shows great promise for the seismic interpreter. One of the more successful deep learning CNN methods uses synthetic data to train a CNN model. Faults are labeled as a single classification and other background geologic features are another classification in CNN-based fault detection. The labeled faults with associated seismic amplitude data are used to train in a CNN model, then predict or classify the corresponding fault classification in a large seismic dataset by the trained CNN model. The outperformance of CNN-based methods is that the computation cost of applications of a pre-trained CNN model to seismic fault classification is extremely low. This study shows applications of CNN models to predict faults from 3D seismic data. Firstly, the CNN model is trained with multiple 3D synthetic seismic amplitude data and their associated fault label data. The training data has been considered with different data quality, frequency bandwidth, noise levels, and structural features. The well-trained CNN model is then applied to detect faults on datasets, which exhibit different noise level and geologic features. Then the results from CNN are compared to those obtained using traditional seismic attributes and manual interpretation. The comparison indicates that the CNN method can perform more accurately and has a high potential to do more on seismic fault detection.

    Jie Qi
    Research Geophysicist

    Jie Qi is a Research Geophysicist at Geophysical Insights, where he works closely with product development and geoscience consultants. His research interests include machine learning-based fault detection, seismic interpretation, pattern recognition, image processing, seismic attribute development and interpretation, and seismic facies analysis. Dr. Qi received a BS (2011) in Geoscience from the China University of Petroleum in Beijing, and an MS (2013) in Geophysics from the University of Houston. He earned a Ph.D. (2017) in Geophysics from the University of Oklahoma, Norman. His industry experience includes work as a Research Assistant (2011-2013) at the University of Houston and the University of Oklahoma (2013-2017). Dr. Qi was with Petroleum Geo-Services (PGS), Inc. in 2014 as a summer intern, where he worked on a semi-supervised seismic facies analysis. In 2017, he served as a postdoctoral Research Associate in the Attributed Assisted-Seismic Processing and Interpretation (AASPI) consortium at the University of Oklahoma from 2017 to 2020.

    Jie Qi
    Research Geophysicist

    An Integrated Fault Detection Workflow

    Seismic fault detection is one of the top critical procedures in seismic interpretation. Identifying faults are significant for characterizing and finding the potential oil and gas reservoirs. Seismic amplitude data exhibiting good resolution and a high signal-to-noise ratio are key to identifying structural discontinuities using seismic attributes or machine learning techniques, which in turn serve as input for automatic fault extraction. Deep learning Convolutional Neural Networks (CNN) performs well on fault detection without any human-computer interactive work. This study shows an integrated CNN-based fault detection workflow to construct fault images that are sufficiently smooth for subsequent fault automatic extraction. The objectives were to suppress noise or stratigraphic anomalies subparallel to reflector dip, and sharpen fault and other discontinuities that cut reflectors, preconditioning the fault images for subsequent automatic extraction. A 2D continuous wavelet transform-based acquisition footprint suppression method was applied time slice by time slice to suppress wavenumber components to avoid interpreting the acquisition footprint as artifacts by the CNN fault detection method. To further suppress cross-cutting noise as well as sharpen fault edges, a principal component edge-preserving structure-oriented filter is also applied. The conditioned amplitude volume is then fed to a pre-trained CNN model to compute fault probability. Finally, a Laplacian of Gaussian filter is applied to the original CNN fault probability to enhance fault images. The resulting fault probability volume is favorable with respect to traditional human-interpreter generated on vertical slices through the seismic amplitude volume.

    Laura Cuttill
    Practice Lead, Advertas

    Young Professionals – Managing Your Personal Brand to Level-up Your Career

    No matter where you are in your career, your online “personal brand” has a huge impact on providing opportunity for prospective jobs and garnering the respect and visibility needed for advancement. While geoscientists tackle ambitious projects, publish in technical papers, and work hard to advance their careers, often, the value of these isn’t realized beyond their immediate professional circle. Learn how to…

    • - Communicate who you are to high-level executives in exploration and development
    • - Avoid common social media pitfalls
    • - Optimize your online presence to best garner attention from recruiters
    • - Stay relevant
    • - Create content of interest
    • - Establish yourself as a thought leader in your given area of specialization
    Laura Cuttill
    Practice Lead, Advertas

    As a 20-year marketing veteran marketing in oil and gas and serial entrepreneur, Laura has deep experience in bringing technology products to market and growing sales pipeline. Armed with a marketing degree from Texas A&M, she began her career doing technical writing for Schlumberger and ExxonMobil in 2001. She started Advertas as a co-founder in 2004 and began to leverage her upstream experience in marketing. In 2006, she co-founded the cyber-security software company, 2FA Technology. After growing 2FA from a startup to 75% market share in target industries, and the subsequent sale of the company, she returned to Advertas to continue working toward the success of her clients, such as Geophysical Insights. Today, she guides strategy for large-scale marketing programs, manages project execution, cultivates relationships with industry media, and advocates for data-driven, account-based marketing practices.

    Mike Dunn
    Sr. Vice President of Business Development

    New Capabilities of 3.4

    Paradise has given interpreters the ability detect more detail within the seismic data. Therefore, a natural extension of the current software is the ability to easily compare the SOM and Geobody results to borehole logs and lithofacies. As a result of this exciting capability, Paradise is now able to display digital well logs, TD charts, formation tops, and cross-sections in simple and straightforward manner. In this What’s New in Paradise 3.4 presentation we will be discussing the new Well Log Cross Section functionality, GPU support for 3 AASPI algorithms, demonstrating significant speedup, and the latest Petrel 2020 connector. Examples of the new well functionality will use the offshore New Zealand Maui Field data set. In addition, a live demonstration will walk users through a well cross section workflow.

    Mike Dunn
    Senior Vice President Business Development

    Michael A. Dunn is an exploration executive with extensive global experience including the Gulf of Mexico, Central America, Australia, China and North Africa. Mr. Dunn has a proven a track record of successfully executing exploration strategies built on a foundation of new and innovative technologies. Currently, Michael serves as Senior Vice President of Business Development for Geophysical Insights.

    He joined Shell in 1979 as an exploration geophysicist and party chief and held increasing levels or responsibility including Manager of Interpretation Research. In 1997, he participated in the launch of Geokinetics, which completed an IPO on the AMEX in 2007. His extensive experience with oil companies (Shell and Woodside) and the service sector (Geokinetics and Halliburton) has provided him with a unique perspective on technology and applications in oil and gas. Michael received a B.S. in Geology from Rutgers University and an M.S. in Geophysics from the University of Chicago.

    Rocky R. Roden
    Senior Consulting Geophysicist

    What Interpreters Should Know about Machine Learning

    Our lives are intertwined with applications, services, orders, products, research, and objects that are incorporated, produced, or effected in some way by Artificial Intelligence and Machine Learning. Buzz words like Deep Learning, Big Data, Supervised and Unsupervised Learning are employed routinely to describe Machine Learning, but how do these applications relate to geoscience interpretation and finding oil and gas. More importantly, do these Machine Learning methods produce better results than conventional interpretation approaches? This webinar will initially wade through the vernacular of Machine Learning and Data Science as it relates to the geoscientist. The presentation will review how these methods are employed, along with interpretation case studies of different machine learning applications. An overview of computer power and machine learning will be described. Machine Learning is a disruptive technology that holds great promise, and this webinar is an interpreter’s perspective, not a data scientist. This course will provide an understanding of how Machine Learning for interpretation is being utilized today and provide insights on future directions and trends.

    Rocky R. Roden
    Senior Consulting Geophysicist

    Over 45 years in industry as a Geophysicist, Exploration/Development Manager, Director of Applied Technology, and Chief Geophysicist. Previously with Texaco, Pogo Producing, Maxus Energy, YPF Maxus, and Repsol (retired as Chief Geophysicist 2001). Mr. Roden has authored or co-authored over 30 technical publications on various aspects of seismic interpretation, AVO analysis, amplitude risk assessment, and geoscience machine learning. Ex-Chairman of The Leading Edge editorial board. Currently a consultant with Geophysical Insights developing machine learning advances for oil and gas exploration and development and is a principal in the Rose and Associates DHI Risk Analysis Consortium, which has involved 85 oil companies since 2001, developing a seismic amplitude risk analysis program and worldwide prospect database. He holds a B.S. in Oceanographic Technology-Geology from Lamar University and an M.S. in Geological and Geophysical Oceanography from Texas A&M University.

    Sarah Stanley
    Senior Geoscientist

    New Capabilities of 3.4

    Paradise has given interpreters the ability detect more detail within the seismic data. Therefore, a natural extension of the current software is the ability to easily compare the SOM and Geobody results to borehole logs and lithofacies. As a result of this exciting capability, Paradise is now able to display digital well logs, TD charts, formation tops, and cross-sections in simple and straightforward manner. In this What’s New in Paradise 3.4 presentation we will be discussing the new Well Log Cross Section functionality, GPU support for 3 AASPI algorithms, demonstrating significant speedup, and the latest Petrel 2020 connector. Examples of the new well functionality will use the offshore New Zealand Maui Field data set. In addition, a live demonstration will walk users through a well cross section workflow.

    Sarah Stanley
    Senior Geoscientist and Lead Trainer

    Sarah Stanley joined Geophysical Insights in October, 2017 as a geoscience consultant, and became a full-time employee July 2018. Prior to Geophysical Insights, Sarah was employed by IHS Markit in various leadership positions from 2011 to her retirement in August 2017, including Director US Operations Training and Certification, the Operational Governance Team, and, prior to February 2013, Director of IHS Kingdom Training. Sarah joined SMT in May, 2002, and was the Director of Training for SMT until IHS Markit’s acquisition in 2011.

    Prior to joining SMT Sarah was employed by GeoQuest, a subdivision of Schlumberger, from 1998 to 2002. Sarah was also Director of the Geoscience Technology Training Center, North Harris College from 1995 to 1998, and served as a voluntary advisor on geoscience training centers to various geological societies. Sarah has over 37 years of industry experience and has worked as a petroleum geoscientist in various domestic and international plays since August of 1981. Her interpretation experience includes tight gas sands, coalbed methane, international exploration, and unconventional resources.

    Sarah holds a Bachelor’s of Science degree with majors in Biology and General Science and minor in Earth Science, a Master’s of Arts in Education and Master’s of Science in Geology from Ball State University, Muncie, Indiana. Sarah is both a Certified Petroleum Geologist, and a Registered Geologist with the State of Texas. Sarah holds teaching credentials in both Indiana and Texas.

    Sarah is a member of the Houston Geological Society and the American Association of Petroleum Geologists, where she currently serves in the AAPG House of Delegates. Sarah is a recipient of the AAPG Special Award, the AAPG House of Delegates Long Service Award, and the HGS President’s award for her work in advancing training for petroleum geoscientists. She has served on the AAPG Continuing Education Committee and was Chairman of the AAPG Technical Training Center Committee. Sarah has also served as Secretary of the HGS, and Served two years as Editor for the AAPG Division of Professional Affairs Correlator.

    Tom Smith
    President and CEO, Geophysical Insights

    Machine Learning for Incomplete Geoscientists

    This presentation covers big-picture machine learning buzz words with humor and unassailable frankness. The goal of the material is for every geoscientist to gain confidence in these important concepts and how they add to our well-established practices, particularly seismic interpretation. Presentation topics include a machine learning historical perspective, what makes it different, a fish factory, Shazam, comparison of supervised and unsupervised machine learning methods with examples, tuning thickness, deep learning, hard/soft attribute spaces, multi-attribute samples, and several interpretation examples. After the presentation, you may not know how to run machine learning algorithms, but you should be able to appreciate their value and avoid some of their limitations.

    Scroll to Top