Using Self-Organizing Maps to Define Seismic Facies

Offshore South America Seismic Facies Analysis

This analysis and application of Paradise involved the evaluation of a 3D volume offshore
South America. A well had been drilled and encountered unexpected high pressures which prevented drilling to the desired deeper target. Traditional methods to identify pressure did not readily reveal a high-pressure zone before drilling. The challenge was to identify the high-pressure zone employing Self-Organizing-Maps (SOMs).

Initial evaluation of the 3D seismic volume suggested there may be facies and stratigraphic variations in the high-pressure zone.

After an interpretation of the local geology and putting this into a regional context, the anomalous high-pressure area appeared to be associated with a slope facies as interpreted from the conventional stacked seismic data.

Therefore, five different combinations of seismic attributes were applied in a SOM analysis to help define the seismic facies in the zone of interest. One specific combination of six seismic attributes clearly defined the seismic slope facies and associated high-pressure region. With the use of 2D colorbars in the 3D Viewer in the Paradise software, the highlighting of specific neurons enabled the visualization of the high pressured seismic facies.

SOM classification for high pore pressure seismic data
A SOM Classification that exposes the region of high pore pressure using the Paradise 2D neural color map (right)
Analysis Results – Exposing High Pore Pressure Region
  • Based on pressure readings from a single well, the increase in pressure seems to be associated with a hummocky, wavy, and at times chaotic seismic reflection character.
  • This reflection character is typically associated with a slope setting where there are rapid facies changes, discontinuous siltstone and mudstone beds and at times channelized sands with interchannel mudstones.
  • Dozens of seismic attributes were generated to help define this seismic facies associated with pressure in the well.
  • Five different sets of seismic attributes were selected for SOM analysis to define this pressure associated seismic facies.
  • All of the SOM Classification volumes and to some degree Probability volumes defined components of this seismic facies (e.g., top, bottom, internal seismic reflection character, reflection character above and below, etc.).
  • A specific set of seismic attributes effectively isolated the pressure zone through a SOM analysis

SOM showing high pore pressure
A SOM probability display showing the high pore pressure region as an anomaly in Paradise


You must log in to access the PDF file. Please log in or register as a user.


Welcome Back!

Download PDF here


Request access by filling the form below to download full PDF.
Most Popular Papers
systematic workflow for reservoir thumbnail
Systematic Workflow for Reservoir Characterization in Northwestern Colombia using Multi-attribute Classification
A workflow is presented which includes data conditioning, finding the best combination of attributes for ML classification aided by Principal ...
Read More
identify reservoir rock
Net Reservoir Discrimination through Multi-Attribute Analysis at Single Sample Scale
Published in the special Machine Learning edition of First Break, this paper lays out results from multi-attribute analysis using Paradise, ...
Read More
Seismic Facies Classification Using Deep Convolutional Neural Networks
Using a new supervised learning technique, convolutional neural networks (CNN), interpreters are approaching seismic facies classification in a revolutionary way ...
Read More
  • Registration confirmation will be emailed to you.

  • We're committed to your privacy. Geophysical Insights uses the information you provide to us to contact you about our relevant content, events, and products. You may unsubscribe from these communications at any time. For more information, check out our Privacy Policy

    Scroll to Top