Geophysical Insights at EAGE 2017 in Paris, Booth #350
Rocky Roden and Ching Wen Chen in May edition of First Break - Interpretation of DHI Characteristics using Machine Learning
Deborah Sacrey wins the 2016 RMAG Best Speaker Award
Seismic interpretation and machine learning by Rocky Roden and Deborah Sacrey, GeoExPro, December 2016
Deborah Sacrey Speaking at the CAPA Technical Symposium, November 4, 2016

Seismic Computing Advances Opening New Possibilities

By Kari Johnson, Special Correspondent

Published with permission: The American Oil & Gas Reporter
November 2015

To analyze petabytes of seismic data, machine learning software in Paradise is applied to sesimic attributes to find patterns and important geology. Machine learning algorithms in Paradise through Self-Organizing Maps are used to analyze data at full seismic resolution.

Click here to view the article

Full article text: 

Various technologies are converging in ways that result in massive quantities of data being generated in most industries today, but the oil and gas industry has a unique challenge with the types of data being collected as well as the quantity of data, says Felix Balderas, director of technology and product development at Geophysical Insights.

“We need to have the tools to analyze multivariate data because traditional tools were not designed for what is happening with data today,” he remarks. “From upstream to downstream, we are seeing an increased use of data-generating sensors and other devices.”

These devices often are equipped with flash drives, making them more rugged and giving them more storage capability, and faster acquisition and transmission rates, and they are interconnected, Balderas points out.

“This and other increased capacities have produced larger data volumes than we have seen in the past,” he says, adding that the emerging Internet of Things (IOT) opens the possibility for tracking data from all aspects of an operation in real time. “This could provide valuable insights, if the proper tools are available to exploit this information.”

In the seismic acquisition sector, massive volumes of data are generated to create datasets with sizes in terms of terabytes and petabytes, Balderas notes. “These must be analyzed by interpreters, but many of the tools interpreters use were developed when a dataset measured in gigabytes was considered big,” he says. “Fortunately, desktop workstations are keeping pace with performance requirements in most cases, but the challenge continues of how to extract knowledge in a manner that is efficient and effective, given the quantity of data now available.”

Among the potential solutions are analytical and statistical techniques that cross-correlate apparently disparate data types to find previously unseen relationships that can help optimize dataset selections, such as seismic attributes, and find patterns that reduce the time to identify strategically important geological areas of interest.

“Traditionally, interpreters looked for geological patterns as much visually as numerically, manually picking points to identify geological features. This was a slow and error-prone technique that introduced human bias. The solutions we are developing are based on learning machine (LM) technology,” Balderas says. “Paradise®, the multiattribute analysis software that applies LM technology, extracts more information from seismic data than is possible using traditional interpretation tools because it learns the data at full seismic resolution. And, unlike human interpreters, Paradise is not limited to viewing only two or three attributes at a time.”

What makes LM algorithms different from imperative programming algorithms is that LM can learn from the data, rather than following a set of predefined instructions. Driverless cars, for example, must be able to recognize any stoplight encountered on a route. “There is no way to describe, using instructions, every possible intersection and stoplight configuration,” Balderas explains. “Sooner or later, the car will encounter a stoplight it has not seen before. With LM algorithms, the car will recognize a pattern and adjust what it knows about stoplights for future reference.”

A similar process of pattern recognition and machine learning techniques can shorten the time for extracting knowledge from geophysical data, he contends. “Applied to a volume of geophysical data, the algorithm looks for patterns that reveal geological features, which is essentially what interpreters do,” notes Balderas.

He adds that the speed of pattern recognition is crucial to generating value. “Learning machines can quickly locate faults, horizons and other geological features for the interpreter to review,” Balderas states. “There is no technological substitute for an experienced interpreter, but this ‘candidate feature’ finding approach helps the interpreter focus his work on areas with the greatest potential.