Leveraging Deep Learning in Extracting Features of Interest from Seismic Data

Current Status
Not Enrolled
Price
Free
Get Started
Leveraging Deep Learning in Extracting Features of Interest from Seismic Data Thumbnail

Enrollment Dates: Enroll Anytime

Instructor: Dr. Tao Zhao

Price:  FREE

Company-wide licenses are available. Please contact [email protected] for further information.

Course Syllabus


Mapping and extracting features of interest is one of the most important objectives in seismic data interpretation. Due to the complexity of seismic data, geologic features identified by interpreters on seismic data using visualization techniques are often challenging to extract. With the rapid development in GPU computing power and the success obtained in computer vision, deep learning techniques, represented by convolutional neural networks (CNN), start to entice seismic interpreters in various applications. The main advantages of CNN over other supervised machine learning methods are its spatial awareness and automatic attribute extraction. The high flexibility in CNN architecture enables researchers to design different CNN models to identify different features of interest. In this e-course, using several seismic surveys acquired from different regions, Dr. Zhao will discuss three CNN applications in seismic interpretation: seismic facies classification, fault detection, and channel extraction. Seismic facies classification aims at classifying seismic data into several user-defined, distinct facies of interest. Conventional machine learning methods often produce a highly fragmented facies classification result, which requires a considerable amount of post-editing before it can be used as geobodies. In the first application, Dr. Zhao will demonstrate that a properly built CNN model can generate seismic facies with higher purity and continuity. In the second application, compared with traditional seismic attributes, Dr. Zhao deploys a CNN model built for fault detection which provides smooth fault images and robust noise degradation. The third application demonstrates the effectiveness of extracting large scale channels using CNN. These examples demonstrate that CNN models are capable of capturing the complex reflection patterns in seismic data, providing clean images of geologic features of interest, while also carrying a low computational cost.

  • Registration confirmation will be emailed to you.

  • We're committed to your privacy. Geophysical Insights uses the information you provide to us to contact you about our relevant content, events, and products. You may unsubscribe from these communications at any time. For more information, check out our Privacy Policy

    Scroll to Top