Seismic Interpretation with Machine Learning

Seismic Interpretation with Machine Learning

Today’s seismic interpreters must deal with enormous amounts of information, or ‘Big Data’, including seismic gathers, regional 3D surveys with numerous processing versions, large populations of wells and associated data, and dozens if not hundreds of seismic attributes that routinely produce terabytes of data. Machine learning has evolved to handle Big Data. This incorporates the use of computer algorithms that iteratively learn from the data and independently adapt to produce reliable, repeatable results. Multi-attribute analyses employing principal component analysis (PCA) and self-organizing maps are components of a machine-learning interpretation workflow (Figure 1) that involves the selection of appropriate seismic attributes and the application of these attributes in an unsupervised neural network analysis, also known as a self-organizing map, or SOM.

Self-Organizing Neural Nets for Automatic Anomaly Identification

Self-Organizing Neural Nets for Automatic Anomaly Identification

Self-organizing maps are a type of unsupervised neural network which fit themselves to the pattern of information in multi-dimensional data in an orderly fashion. The curvature and harvesting of the classification with low probability in a SOM are an indicator of multi-attribute anomalies for further investigation.

Distillation of Seismic Attributes to Geologic Significance

Distillation of Seismic Attributes to Geologic Significance

Seismic attributes identify many geologic features in seismic data where PCA helps identify optimal attributes and help determine which attributes to use in a multi-attribute analysis using SOM. The process in Paradise reveals natural clustering by pattern recognition in the data helping define aspects like stratigraphy, seismic facies, DHI features and sweet spots for shale.

Introduction to Self-Organzing Maps in Multi-Attribute Seismic Data

Introduction to Self-Organzing Maps in Multi-Attribute Seismic Data

Unsupervised neural network searches multi-dimensional data for natural clusters. Neurons are attracted to areas of higher information density. The SOM analysis relates to subsurface geometry and rock properties while noting multi-attribute seismic properties at the wells, correlating to rock lithologies, with those away from the wells.

Submitting....

X

What can we help you find today ?

More information about machine learning
More information about Paradise
More information on attributes
Identifying DHIs using SOM
Identifying thin beds / interpreting below tuning
Identifying geobodies using SOM
Something else...
Just looking around

Please tell us a bit about yourself so that we can provide the right information.

Your Role

Geoscience manager
Geophysicist
Geologist
IT
Senior Manager
G&G Technology
Other

And where you work in the industry?

E&P company
Consulting
Student
Technology / Equipment company
Other
X

Send Message