web analytics
Webinar: Leveraging Deep Learning in Extracting Features of Interest from Seismic Data

Webinar: Leveraging Deep Learning in Extracting Features of Interest from Seismic Data

20 March 2019

We are delighted to kick off our quarterly machine learning webinar series this year with a presentation on applications of Convolutional Neural Networks (CNN) to seismic interpretation by Dr. Tao Zhao, Sr. Research Geophysicists with Geophysical Insights in Houston, Texas. Enabled by the development of GPU computing CNN, a form of deep learning, is proving to be an effective tool for many pattern recognition problems. Dr. Zhao will focus on three important applications of CNN that can have an immediate impact on interpretation workflows:

  • Seismic facies classification
  • Channel extraction
  • Fault detection

The webinar is free and runs an hour, including time for questions and answers at the end of the presentation.

Register today to attend the free webinar on Applications of Convolutional Neural Networks to Seismic Interpretation by Dr. Tao Zhao via the link below. You will receive a confirmation of your registration and details about how to log into the event upon registration. See below for the time of the webinar in your region.

Tao Zhao

Research Geophysicist | Geophysical Insights

TAO ZHAO joined Geophysical Insights in 2017. As a Research Geophysicist, Dr. Zhao develops and applies shallow and deep machine learning techniques on seismic and well log data, and advances multiattribute seismic interpretation workflows. He received a B.S. in Exploration Geophysics from the China University of Petroleum in 2011, an M.S. in Geophysics from the University of Tulsa in 2013, and a Ph.D. in geophysics from the University of Oklahoma in 2017. During his Ph.D. work at the University of Oklahoma, Dr. Zhao was an active member of the Attribute-Assisted Seismic Processing and Interpretation (AASPI) Consortium developing pattern recognition and seismic attribute algorithms.

Abstract:

Mapping and extracting features of interest is one of the most important objectives in seismic data interpretation. Due to the complexity of seismic data, geologic features identified by interpreters on seismic data using visualization techniques are often challenging to extract. With the rapid development in GPU computing power and the success obtained in computer vision, deep learning techniques, represented by convolutional neural networks (CNN), start to entice seismic interpreters in various applications. The main advantages of CNN over other supervised machine learning methods are its spatial awareness and automatic attribute extraction. The high flexibility in CNN architecture enables researchers to design different CNN models to identify different features of interest.

In this webinar, using several seismic surveys acquired from different regions, I will discuss three CNN applications in seismic interpretation: seismic facies classification, fault detection, and channel extraction. Seismic facies classification aims at classifying seismic data into several user-defined, distinct facies of interest. Conventional machine learning methods often produce a highly fragmented facies classification result, which requires a considerable amount of post-editing before it can be used as geobodies. In the first application, I will demonstrate that a properly built CNN model can generate seismic facies with higher purity and continuity. In the second application, compared with traditional seismic attributes, I deploy a CNN model built for fault detection which provides smooth fault images and robust noise degradation. The third application demonstrates the effectiveness of extracting large scale channels using CNN. These examples demonstrate that CNN models are capable of capturing the complex reflection patterns in seismic data, providing clean images of geologic features of interest, while also carrying a low computational cost.

Solving Interpretation Problems using Machine Learning on Multi-Attribute, Sample-Based Seismic Data

Solving Interpretation Problems using Machine Learning on Multi-Attribute, Sample-Based Seismic Data

Solving Interpretation Problems using Machine Learning on Multi-Attribute, Sample-Based Seismic Data
Presented by Deborah Sacrey, Owner of Auburn Energy
Challenges addressed in this webinar include:

  • Reducing risk in drilling marginal or dry holes
  • Interpretation of thin bedded reservoirs far below conventional seismic tuning
  • How to better understand reservoir characteristics
  • Interpretation of reservoirs in deep, pressured environments
  • Using the classification process to help with correlations in difficult stratigraphic or structural environments

The webinar is open to those interested in learning more about how the application of machine learning is key to seismic interpretation.

 
Deborah Sacrey

Deborah Sacrey

Owner

Auburn Energy

Deborah Sacrey is a geologist/geophysicist with 41 years of oil and gas exploration experience in the Texas, Louisiana Gulf Coast, and Mid-Continent areas of the US. Deborah specializes in 2D and 3D interpretation for clients in the US and internationally.

She received her degree in Geology from the University of Oklahoma in 1976 and began her career with Gulf Oil in Oklahoma City. She started Auburn Energy in 1990 and built her first geophysical workstation using the Kingdom software in 1996. Deborah then worked closely with SMT (now part of IHS) for 18 years developing and testing Kingdom. For the past eight years, she has been part of a team to study and bring the power of multi-attribute neural analysis of seismic data to the geoscience community, guided by Dr. Tom Smith, founder of SMT. Deborah has become an expert in the use of the Paradise® software and has over five discoveries for clients using the technology.

Deborah is very active in the geological community. She is past national President of SIPES (Society of Independent Professional Earth Scientists), past President of the Division of Professional Affairs of AAPG (American Association of Petroleum Geologists), Past Treasurer of AAPG and Past President of the Houston Geological Society. She is currently the incoming President of the Gulf Coast Association of Geological Societies (GCAGS) and is a member of the GCAGS representation on the AAPG Advisory Council. Deborah is also a DPA Certified Petroleum Geologist #4014 and DPA Certified Petroleum Geophysicist #2. She is active in the Houston Geological Society, South Texas Geological Society and the Oklahoma City Geological Society (OCGS).