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Summary

Multi-attribute seismic samples (even as entire 
attribute surveys), Principal Component Analysis 
(PCA), attribute selection lists, and natural clusters 
in attribute space are candidate inputs to machine 
learning engines that can operate on these data 
to train neural network topologies and generate  
autopicked geobodies. This paper sets out a unified 
mathematical framework for the process from 
seismic samples to geobodies.  SOM is discussed 
in the context of inversion as a dimensionality-
reducing classifier to deliver a winning neuron 
set.  PCA is a means to more clearly illuminate 
features of a particular class of geologic geobodies.  
These principles are demonstrated with geobody 
autopicking below conventional thin bed resolution 
on a standard wedge model.

Introduction

Seismic attributes are now an integral component 
of nearly every 3D seismic interpretation.  Early 
development in seismic attributes is traced to Taner 
and Sheriff (1977).  Attributes have a variety of 
purposes for both general exploration and reservoir 
characterization, as laid out clearly by Chopra and 
Marfurt (2007).  Taner (2003) summarizes attribute 
mathematics with a discussion of usage.

Self-Organizing Maps (SOM) are a type of 
unsupervised neural networks that self-train in the 
sense that they obtain information directly from 
the data.  The SOM neural network is completely 
self-taught, which is in contrast to the perceptron 
and its various cousins  undergo supervised 
training.  The winning neuron set that results from 
training then classifies the training samples to test 
itself by finding the nearest neuron to each training 
sample (winning neuron).  In addition, other data 
may be classified as well.  First discovered by 
Kohonen (1984), then advanced and expanded 
by its success in a number of areas (Kohonen, 
2001; Laaksonen, 2011), SOM has become a part 
of several established neural network textbooks, 
namely Haykin (2009) and Dutta, Hart and Stork 
(2001).  Although the style of SOM discussed here 
has been used commercially for several years, only 
recently have results on conventional DHI plays 
been published (Roden, Smith and Sacrey, 2015).  

Three Spaces

The concept of framing seismic attributes as multi-
attribute seismic samples for SOM training and 
classification was presented by Taner, Treitel, 
and Smith (2009) in an SEG Workshop.  In that 
presentation, survey data and their computed 
attributes reside in survey space.  The neural 
network resides in neuron topology space.  These 
two meet in attribute space where neurons hunt for 
natural clusters and learn their characteristics.  

Results were shown for 3D surveys over the 
venerable Stratton Field and a Gulf of Mexico salt 
dome.  The Stratton Field SOM results clearly 
demonstrated that there are continuous geobody 
events in the weak reflectivity zone between C38 
and F11 events, some of which are well below 
seismic tuning thickness, that could be tied to 
conventional reflections and which correlated 
with wireline logs at the wells.  Studies of SOM 
machine learning of seismic models were presented 
by Smith and Taner (2010).  They showed how 
winning neurons distribute themselves in attribute 
space in proportion to the density of multi-attribute 
samples.  Finally, interpretation of SOM salt dome 
results found a low probability zone where multi-
attribute samples of poor fit correlated with an 
apparent salt seal and DHI down-dip conformance 
(Smith and Treitel, 2010).   

Survey Space to Attribute Space:

Ordinary seismic samples of amplitude traces in a 
3D survey may be described as an ordered set  
                       .  A multi-attribute survey is a “Super 
3D Survey” constructed by combining a number 
of attribute surveys with the amplitude survey.  
This adds another dimension to the set and another 
subscript, so the new set of samples including the 
additional attributes is                          .  These 
data may be thought of as separate surveys or 
equivalently separate samples within one survey.  
Within a single survey, each sample is a multi-
attribute vector.  This reduces the subscript by one 
count so the set of multi-attribute vectors 
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Next, a two-way mapping function may be defined 
that references the location of any sample in the 3D 
survey by single and triplet indices
                        Now the three survey 
coordinates may be gathered into a single index 
so the multi-attribute vector samples are also an 
unordered set in attribute space           
The index map is a way to fine a sample a sample 
in attribute space from survey space and vice versa.  

Multi-attribute sample and set in attribute 
space: 

A multi-attribute seismic sample is a column 
vector in an ordered set of three subscripts c,d,e 
representing sample index, trace index, and line 
index. Survey bins refer to indices d and e.  These 
samples may also be organized into an unordered 
set with subscript i.  They are members of an 
F-dimensional real space.  The attribute data are 
normalized so in fact multi-attribute samples reside 
in scaled attribute space.

Natural clusters in attribute space:
 

Just as there are reflecting horizons in survey 
space, there must be clusters of coherent energy in 
attribute space.  Random samples, which carry no 
information, are uniformly distributed in attribute 
space just as in survey space.  The set C of natural 
clusters in attribute space is unordered and contains 
M members.  Here, the brackets          indicate 
an index range.  The natural clusters may reside 
anywhere in attribute space, but attribute space is 
filled with multi-attribute samples, only some of 
which are meaningful natural clusters.  Natural 
clusters may be big or small, tightly packed or 
diffuse.  The rest of the samples are scattered 
throughout F-space.  Natural clusters are discovered 
in attribute space with learning machines imbued 
with simple training rules and aided by properties 
of their neural networks.

A single natural cluster:

A natural cluster      may have N elements in it.  
Every natural cluster is expected to have a different 
number of multi-attribute samples associated 
with it.  Each element is taken from the pool of 
the set of all multi-attribute samples         Every 
natural cluster may have a different number of 
multi-attribute samples associated with it so for 
any natural cluster        then N(m).  Every natural 
cluster has its own unique properties described by 

the subset of samples        that are associated with 
it.  Some sample subsets associated with a winning 
neuron are small (“not so popular”) and some 
subsets are large (“very popular”).  The distribution 
of Euclidean distances may be tight (“packed”) or 
loose (“diffuse”).

Geobody sample and geobody set in survey 
space:
    

For this presentation, a geobody Gb is defined as 
a contiguous region in survey space composed of 
elements which are identified by members g.  The 
members of a geobody are an ordered set 
which registers with those coordinates of members 
of the multi-attribute seismic survey   

A geobody member is just an identification number 
(id), an integer        Although the 3D seismic survey 
is a fully populated “brick” with members 
       , the geobody members          register at certain 
contiguous locations, but not all of them.  The 
geobody      is an amorphous, but contiguous, 
“blob” within the “brick” of the 3D survey.  The 
coordinates of the geobody blob in the earth are 
         where                                 By this, all the 
multi-attribute samples in the geobody may be 
found, given the id and three survey coordinates of 
a seed point.

A single geobody in survey space:

Each geobody      is a set of N geobody members 
         with the same id.  That is, there are N 
members in          , so N(b).  The geobody members 
for this geobody are taken from the pool of all 
geobody samples, the set        Some geobodies 
are small and others large.  Some are tabular, 
some lenticular, some channels, faults, columns, 
etc.  So how are geobodies and natural clusters 
related? 

A geobody is not a natural cluster:  

This expression is short but sweet.  It says a lot.  On 
the left is the set of all B geobodies.  On the right is 
the set of M natural clusters.  The expression says 
that these two sets aren’t the same.  On the left, the 
geobody members are id numbers
These are in survey space.  On the right, the natural 
clusters         These are in attribute space.  
What this means is that geobodies are not directly 
revealed by natural clusters.  So, what is missing?
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Interpretation is conducted in survey space.  
Machine learning is conducted in attribute space.  
Someone has to pick the list of attributes.  The 
attributes must be tailored to the geological 
question at hand.  And a good geological 
question is always the best starting point for any 
interpretation.

A natural cluster is an imaged geobody:
  

Here, a natural cluster Cm is defined as an 
unorganized set of two kinds of objects: a function 
I of a set of geobodies Gi and random noise N.  The 
number of geobodies is I and unspecified.  The 
function   is an illumination function which 
places the geobodies in        The illumination 
function is defined by the choice of attributes.  
This is the attribute selection list.  The number of 
geobodies in a natural cluster Cm is zero or more, 
0≤i≤I.  The geobodies are distributed throughout 
the 3D survey.  

The natural cluster concentrates geobodies of 
similar illumination properties.  If there are no 
geobodies or there is no illumination with a 
particular attribute selection list,         so the 
set is only noise.  The attribute selection list is a 
critically import part of multi-attribute seismic 
interpretation.  The wrong attribute list may not 
illuminate any geobodies at all.

Geobody inversion from a math perspective:

Multi-attribute seismic interpretation proceeds from 
the preceding equation in three parts.  First, as part 
of an inversion process, a natural cluster        is 
statistically estimated by a machine learning 
classifier such as SOM  with a neural network 
topology.  See Chopra, Castagna and Potniaguie 
(2006) for a contrasting inversion methodology.  
Secondly, SOM employs a simple training rule 
that a neuron nearest a selected training sample 
is declared the winner and the winning neuron 
advances toward the sample a small amount.  
Neurons are trained by attraction to samples.  One 
complete pass through the training samples is 
called an epoch.  Other machine learning algorithm 
have other training rules to adapt to data.  Finally, 
SOM has a dimensionality reducing feature 
because information contained in natural clusters 
is transferred (imperfectly) to the winning neuron 
set in the finalized neural network topology through 
cooperative learning.  Neurons in winning neuron 

neighborhood topology move along with the 
winning neuron in attribute space.  SOM training is 
also dynamic in that the size of the neighborhood 
decreases with each training time step so that 
eventually the neighborhood shrinks so that all 
subsequent training steps are competitive.

Because       is a statistical estimate, let it be 
called the statistical estimate of the “signal” 
part of        The true geobody is independent of 
an illumination function.  The dimensionality 
reduction        associated with multi-attribute 
interpretation has a purpose of geobody recognition 
through identification, dimensionality reduction 
and classification.  In fact, in the chain of steps 
there is a mapping and un-mapping process with no 
guarantee that the geobody will be recovered:

However, the image function           may be 
inappropriate to illuminate the geobody in F-space 
because of a poor choice of attributes.  So at best, 
the geobodies is illuminated by an imperfect set 
of attributes and detected by a classifier that is 
primitive.  The results often must be combined, 
edited and packaged into useful, interpreted 
geobody units, ready to be incorporated into an 
evolving geomodel on which the interpretation will 
rest.

Attribute Space Illumination

One fundamental aspect of machine learning is 
dimensionality reduction from attribute space 
because its dimensions are usually beyond our 
grasp.  The approach taken here is from the 
perspective of manifolds which are defined as 
spaces with the property of “mapability” where 
Euclidean coordinates may be safely employed 
within any local neighborhood (Haykin, 2009, 
p.437-442).  

The manifold assumption is important because 
SOM learning is routinely conducted on multi-
attribute samples in attribute space using Euclidean 
distances to move neurons during training.  One 
of the first concerns of dimensionality reduction 
is the potential to lose details in natural clusters.  
In practice, it has been found that halving the 
original amplitude sample interval is advantageous, 
but further downsampling has not proven to be 
beneficial.  Infilling a natural cluster allows neurons 
during competitive training to adapt to subtle 
details that might be missed in the original data.
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Curse of Dimensionality

The Curse of Dimensionality (Haykin, 2009) is, in 
fact,, many curses.  One problem is that uniformly 
sampled space increases dramatically with 
increasing dimensionality.  This has implications 
when gathering training samples for a neural 
network.  For example, cutting a unit length bar 
(1-D) with a sample interval of .01 results in 100 
samples.  Dividing a unit length hypercube in 
10-D with a similar sample interval results in 1020 
samples (1010 x 102).  If the nature of attribute 
space requires uniform sampling across a broad 
numerical range, then a large number of attributes 
may not be practical.  However, uniform sampling 
is not an issue here because the objective is to 
locate and detail features of natural clusters.
Also, not all attributes are important.  In the 
hunt for natural clusters, PCA (Haykin, 2009) is 
often a valuable tool to assess the relative merits 
of each attribute in a SOM attribute selection 
list.  Depending on geologic objectives, several 
dominant attributes may be picked from the first, 
second or even third principal eigenvectors or may 
pick all attributes from one principle eigenvector.

Geobody inversion from an interpretation 
perspective:

Multi-attribute seismic interpretation is finding 
geobodies in survey space aided by machine 
learning tools that hunt for natural clusters in 
attribute space.  The interpreter’s critical role in this 
process is the following: 

• Choose questions that carry exploration toward 
meaningful conclusions.

• Be creative with seismic attributes so as to 
effectively address illumination of geologic 
geobodies.

• Pick attribute selection lists with the assistance 
of PCA.

• Review the results of machine learning which 
may identify interesting geobodies      in natural 
clusters autopicked by SOM.

• Look through the noise to edit and build 
geobodies Gb with a workbench of visualization 
displays and a variety of statistical decision-
making tools.

• Construct geomodels by combining autopicked 
geobodies which in turn allow predictions on 
where to make better drilling decisions. 

The Geomodel

After classification, picking geobodies from 
their winning neurons starts by filling an 
empty geomodel               Natural clusters are 
consolidators of geobodies with common properties 
in attribute space so M < B.  In fact, it is  often 
found that M    B.  That is, geobodies “stack” in 
attribute space.  Seismic data is noisy.  Natural 
clusters are consequentially statistical.  Not 
every sample g classified by a winning neuron is 
important although SOM classifies every sample. 
Samples that are a poor fit are probably noise.  
Construction of a sensible geomodel depends on 
answering well thought out geological questions 
and phrased by selection of appropriate attribute 
selection lists. 

Working below classic seismic tuning thickness

Classical seismic tuning thickness is λ/4.  
Combining vertical incidence layer thickness  
                    with λ=V/f leads to a critical layer 
thickness      Resolution below classical 
seismic tuning thickness has been demonstrated 
with multi-attribute seismic samples and a machine 
learning classifier operating on those samples in 
scaled attribute space (Roden, et. al., 2015). High-
quality natural clusters in attribute space imply 
tight, dense balls (low entropy, high density).  SOM 
training and classification of a classical wedge 
model at three noise levels is shown in Figures 
1 and 2 which show tracking well below tuning 
thickness.  

Seismic Processing: Processing the survey at a 
fine sample interval is preferred over resampling 
the final survey to a fine sample interval. Highest 
S/N ratio is always preferred. Preprocessing: 
Fine sample interval of base survey is preferred 
to raising the density of natural clusters and then 
computing attributes, but do not compute attributes 
and then resample because some attributes are not 
continuous functions. Derive all attributes from 
a single base survey in order to avoid misties. 
Attribute Selection List: Prefer attributes that 
address the specific properties of an intended 
geologic geobody. Working below tuning, prefer 
instantaneous attributes over attributes requiring 
spatial sampling.  Thin bed results on 3D surveys 
in the Eagle Ford Shale Facies of South Texas 
and in the Alibel horizon of the Middle Frio 
Onshore Texas and Group corroborated with 
extensive well control to verify consistent results 
for more accurate mapping of facies below tuning 
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without usual traditional frequency assumptions 
(Roden, Smith, Santogrossi and Sacrey, personal 
communication, 2017).   

Conclusion

There is a firm mathematical basis for a unified 
treatment of multi-attribute seismic samples, 
natural clusters, geobodies and machine learning 
classifiers such as SOM.  Interpretation of multi-
attribute seismic data is showing great promise, 
having demonstrated resolution well below 
conventional seismic thin bed resolution due to 
high-quality natural clusters in attribute space 
which have been detected by a robust classifier 
such as SOM. 
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Figure 1: Wedge models for three noise levels trained and classified by SOM with attribute list of amplitude and 
Hilbert transform (not shown) on 8 x 8 hexagonal neuron topology. Upper displays are amplitude. Middle displays 
are SOM classifications with a smooth color map. Lower displays are SOM classifications with a random color map. 
Rightmost vertical column is an enlargement of wedge model tips at highest noise level.  Multi-attribute classification 
samples are clearly tracking well below tuning thickness which is left of the center in the right column displays.

Figure 2: Attribute space for three wedge models with horizontal axis of amplitude and vertical axis of Hilbert 
transform. Upper displays are multi-attribute samples before SOM training and lower displays after training and 
samples classified by winning neurons in lower left with smooth color map.  Upper right is an enlargement of tip of 
third noise level wedge model from Figure 1 where below-tuning bed thickness is right of the thick vertical black 
line. 
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