Video (in Chinese) : Leveraging Deep Learning in Extracting Features of Interest from Seismic Data

Video (in Chinese) : Leveraging Deep Learning in Extracting Features of Interest from Seismic Data

 

Abstract:

 

Mapping and extracting features of interest is one of the most important objectives in seismic data interpretation. Due to the complexity of seismic data, geologic features identified by interpreters on seismic data using visualization techniques are often challenging to extract. With the rapid development in GPU computing power and the success obtained in computer vision, deep learning techniques, represented by convolutional neural networks (CNN), start to entice seismic interpreters in various applications. The main advantages of CNN over other supervised machine learning methods are its spatial awareness and automatic attribute extraction. The high flexibility in CNN architecture enables researchers to design different CNN models to identify different features of interest. In this webinar, using several seismic surveys acquired from different regions, I will discuss three CNN applications in seismic interpretation: seismic facies classification, fault detection, and channel extraction. Seismic facies classification aims at classifying seismic data into several user-defined, distinct facies of interest. Conventional machine learning methods often produce a highly fragmented facies classification result, which requires a considerable amount of post-editing before it can be used as geobodies. In the first application, I will demonstrate that a properly built CNN model can generate seismic facies with higher purity and continuity. In the second application, compared with traditional seismic attributes, I deploy a CNN model built for fault detection which provides smooth fault images and robust noise degradation. The third application demonstrates the effectiveness of extracting large scale channels using CNN. These examples demonstrate that CNN models are capable of capturing the complex reflection patterns in seismic data, providing clean images of geologic features of interest, while also carrying a low computational cost.

Tao Zhao

Research Geophysicist | Geophysical Insights

TAO ZHAO joined Geophysical Insights in 2017. As a Research Geophysicist, Dr. Zhao develops and applies shallow and deep machine learning techniques on seismic and well log data, and advances multiattribute seismic interpretation workflows. He received a B.S. in Exploration Geophysics from the China University of Petroleum in 2011, an M.S. in Geophysics from the University of Tulsa in 2013, and a Ph.D. in geophysics from the University of Oklahoma in 2017. During his Ph.D. work at the University of Oklahoma, Dr. Zhao was an active member of the Attribute-Assisted Seismic Processing and Interpretation (AASPI) Consortium developing pattern recognition and seismic attribute algorithms.

Video: Leveraging Deep Learning in Extracting Features of Interest from Seismic Data

Video: Leveraging Deep Learning in Extracting Features of Interest from Seismic Data

 

Abstract:

 

Mapping and extracting features of interest is one of the most important objectives in seismic data interpretation. Due to the complexity of seismic data, geologic features identified by interpreters on seismic data using visualization techniques are often challenging to extract. With the rapid development in GPU computing power and the success obtained in computer vision, deep learning techniques, represented by convolutional neural networks (CNN), start to entice seismic interpreters in various applications. The main advantages of CNN over other supervised machine learning methods are its spatial awareness and automatic attribute extraction. The high flexibility in CNN architecture enables researchers to design different CNN models to identify different features of interest. In this webinar, using several seismic surveys acquired from different regions, I will discuss three CNN applications in seismic interpretation: seismic facies classification, fault detection, and channel extraction. Seismic facies classification aims at classifying seismic data into several user-defined, distinct facies of interest. Conventional machine learning methods often produce a highly fragmented facies classification result, which requires a considerable amount of post-editing before it can be used as geobodies. In the first application, I will demonstrate that a properly built CNN model can generate seismic facies with higher purity and continuity. In the second application, compared with traditional seismic attributes, I deploy a CNN model built for fault detection which provides smooth fault images and robust noise degradation. The third application demonstrates the effectiveness of extracting large scale channels using CNN. These examples demonstrate that CNN models are capable of capturing the complex reflection patterns in seismic data, providing clean images of geologic features of interest, while also carrying a low computational cost.

To view this webinar in Chinese, please click here.

Tao Zhao

Research Geophysicist | Geophysical Insights

TAO ZHAO joined Geophysical Insights in 2017. As a Research Geophysicist, Dr. Zhao develops and applies shallow and deep machine learning techniques on seismic and well log data, and advances multiattribute seismic interpretation workflows. He received a B.S. in Exploration Geophysics from the China University of Petroleum in 2011, an M.S. in Geophysics from the University of Tulsa in 2013, and a Ph.D. in geophysics from the University of Oklahoma in 2017. During his Ph.D. work at the University of Oklahoma, Dr. Zhao was an active member of the Attribute-Assisted Seismic Processing and Interpretation (AASPI) Consortium developing pattern recognition and seismic attribute algorithms.

Machine Learning Essentials for Seismic Interpretation: an e-Course by Dr. Tom Smith

Machine Learning Essentials for Seismic Interpretation: an e-Course by Dr. Tom Smith

Machine learning is foundational to the digital transformation of the oil & gas industry and will have a dramatic impact on the exploration and production of hydrocarbons.  Dr. Tom Smith, the founder and CEO of Geophysical Insights, conducts a comprehensive survey of machine learning technology and its applications in this 24-part series.  The course will benefit geoscientists, engineers, and data analysts at all experience levels, from data analysts who want to better understand applications of machine learning to geoscience, to senior geophysicists with deep experience in the field.

Aspects of supervised learning, unsupervised learning, classification and reclassification are introduced to illustrate how they work on seismic data.  Machine learning is presented, not as an end-all-be-all, but as a new set of tools which enables interpretation on seismic data on a new, higher level that of abstraction  that promises to reduce risks and identify features that which might otherwise be missed.

The following major topics are covered:

  • Operation  – supervised and unsupervised learning; buzzwords; examples
  • Foundation  – seismic processing for ML; attribute selection list objectives; principal component analysis
  • Practice  – geobodies; below-tuning; fluid contacts; making predictions
  • Prediction – the best well; the best seismic processing; over-fitting; cross-validation; who makes the best predictions?

This course can be taken for certification, or for informational purposes only (without certification). 

Enroll today for this valuable e-course from Geophysical Insights!

What is Big Data?

What is Big Data?

 

Let’s talk for a minute about the concepts of Big Data.

Remember a few years ago, if you wanted to survive in the oil and gas business, saving the whales was all the rage? We searched for some way to incorporate protecting the whales into our exploration geophysics, and that would affect operations. Well, we have another big thing today – Big Data. We’re always looking for ways to tie in what we’re doing to Big Data. The bosses up at board level – they’re all talking about Big Data. What is it?

Big Data is access to large volumes of disparate kinds of oil and gas data, which we then feed to machine learning algorithms to discover unknown relationships. It’s the unknown data we’ve never spotted before. A key to that definition is “disparate kinds”. So, if you say “I’m doing big data with my seismic data” – that’s not really an appropriate choice of terms. If you say “I’m going to throw in all my seismic data, along with associated wells, and my production data.” – NOW you are starting to talk about real Big Data operations.

A couple more key terms to keep in mind:

Data Mining is evaluating Big Data with deep learning.

And finally, the Internet of Things (IoT).

This may actually have a bigger impact on our industry than even machine learning. The IoT refers to all the pieces of equipment and hardware in our lives being hooked up to the internet. The IoT is walking up to your web-enabled refrigerator that recognizes your face and what you add and remove to the contents. In our business, we’re looking at the GPS of the boat, the geophones – everything is a web-aware device to both send and receive. In fact, when the geophones get planted, their GPS is still communicating. We know when they are in the ground, and when they get pulled up, thrown in the back of a truck, and driven somewhere.

With the trifecta of those things – Big Data, IoT, and Data Mining we are approaching a new age in the oil and gas industry to know things and understand them in ways we never have before.

At Geophysical Insights, we believe You should be able to query your seismic data with learning machines just as effortlessly and with as much reliability as you query the web for the nearest gas station.